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Abstract— Realizing dexterous rotation under the micro-
scope has been a great and yet not-well-addressed chal-
lenge in micro/nano-robotics. The limited field of view (FOV)
of a microscope necessitates point-wise in-situ rotation,
which refers to manipulating objects within their existing
or natural environment. Though on-axis in-situ rotation
has been investigated, off-axis in-situ rotation, which is
more suitable to classical nano-robot setups, remains un-
explored. The main difficulty facing here is the model uncer-
tainties and visual disturbances that fail traditional control
methods. In this paper, we propose a novel control scheme,
namely the iterative learning embedded composite model
reference adaptive control (IL-CMRAC), for efficient visual
servo to solve the problem of in-situ off-axis rotation, by
fully leveraging the repetitiveness nature of rotational mo-
tion. IL-CMRAC takes advantage of both offline learning and
online adaptation to tackle the difficulties brought by un-
certainties. Experiments demonstrated that the proposed
method is capable of realizing high-precision off-axis in-
situ rotation by average error within several microns.

Index Terms— Nanorobotics, Indirect Iterative Learning
Control, Composite Model Reference Adaptive Control

I. INTRODUCTION

NANOROBOTIC manipulation under the microscope
has greatly extended mankind’s capability in handling

micro/nano-scale objects in material [1] and life science [2],
particularly in terms of in-situ characterization and in-situ
manipulation [3]. Among different in-situ tasks, in-situ rotation
has been a great challenge in nanorobotics, which can find
wide applications like 360◦ materials observation or twisting
test [4]. By mechanical setup, in-situ rotation can be realized
by on-axis rotating [5] or off-axis rotating, depending on
whether the target point sits on the rotating axis. With on-
axis in-situ rotation has been well investigated, however, off-
axis in-situ rotation is more intuitive and versatile but remains
unexplored. The staggering challenge is that the eye-hand
model uncertainties and nonlinear mechanical disturbances
become prominent leading to large spatial misalignment errors.
Thus, the necessity to develop a suitable control method for
off-axis in-situ rotation arises for the nanorobotics community.
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Numerous methods have been developed in the control
community to address the challenge stemming from the model
uncertainties and external disturbances. However, these meth-
ods have not leveraged the inherent repetitiveness of many
robotics systems, leading to unsatisfactory transient perfor-
mance for motion control [6]. Such an issue can be effectively
addressed by the Iterative Learning Control (ILC). Nonethe-
less, conventional ILC is unable to address scenarios that
feature complicated uncertainties [7], such as non-identical
initial conditions, or batch-varying dynamics. Traditional ILC
[8] can only guarantee bounded iterative convergence, if those
uncertainties between iterations are bounded. Alternatively,
adaptive control exhibits a notable efficacy in dealing with
non-repetitive uncertainties. Among various existing solutions,
the composite model reference adaptive control (CMRAC)
strategy [9] stands out as one of the most renowned and
mature methodologies. Compared to the conventional MARC,
CMARC uses both prediction errors and tracking errors in for-
mulating adaptive law dynamics and therefore exhibits better
transient characteristics and improves parameter convergence
[9]–[11]. The inherent constraint confines the CMRAC ap-
proach to tracking the output of the reference model rather than
directly tracking the reference signal itself. However, similar
to any model reference adaptive technique, crafting a reference
model capable of eliciting intended responses across diverse
trajectories remains a formidable challenge even for seasoned
control engineers. Regardless of some attempts [12]–[15] to
combine the ILC and adaptive control, there is few approach
that fully exploits the online data memory to extract parametric
information such that the convergence of the tracking error and
prediction error can be simultaneously guaranteed without a
stringent condition termed persistent excitation.

Motivated by the above discussion, we propose a novel
IL-CMRAC framework that combines the ILC and CMRAC
techniques to solve the off-axis in-situ rotation problem of
nanorobots in precision scale. The delicate integration of
learning and adaptive control relies on the introduction of a
stabilized nominal model as the reference model. This allows
us to obtain the learning policy in an offline and low-cost
manner and endows the controller with the direct ability to
track the desired reference signal. Furthermore, the proposed
scheme, not only relaxes the stringent repetitive conditions
imposed by ILC assumptions but also reduces the effort
of designing reference models, thus mitigating the need for
extensive control expertise.
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Notation: Defined Z = {0, 1, 2, 3, · · · } as the set of integer,
and similarly, Z+ = {1, 2, · · · }, ZN = {0, 1, · · · , N}, Im =
{1, 2, · · · ,m} for some N,m ∈ Z+. The symbol z is used
to denote the advance operator: zJr(t)K = r(t + 1), and
Wm(z)Jr(t)K denotes the time-domain output of the system
Wm(z) whose input is r(t). Im ∈ Rm×m is used to denote
the identical matrix.

II. NANOROBOTS AND PROBLEM FORMULATION
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Fig. 1. Illustration of off-axis in-situ rotation of nanorobot under the
microscope. Note the in-situ point is away from the rotating axis. The
coordinates {M} is established on nanopositioner, while coordinates
{C} is established on microscope.

In order to maintain in-situ of the observed object during
rotation under scanning electron microscope, a nanorobotic
system is established, consisting of a microscope providing
visual feedback and a nanopositioner composed of three
translation degrees of freedom (DOFs) and a rotation DOF,
as illustrated by Fig. 1. The three translation DOFs are
orthogonally mounted, with the rotation DOF utilized at the
end joint of the nanopositioner. The nanopositioners are driven
based on the stick-slip effect of piezoelectric ceramic material
and provide precise optical grating feedback with repeatability
accuracy of 50 nm and 1 m°. The rotary nanopositioner rotates
the observed sample around one axis, changing its posture and
giving multidirectional imaging condition under microscope,
and the translational nanopositioners provide linear movement
along the three axes, compensating on the displacement dur-
ing rotation. In this experiment, an atomic force microscope
(AFM) cantilever is securely fixed on the end of the nanoposi-
tioner with an unknown mechanical misalignment away from
the rotation axis. The off-axis in-situ rotation task is thus
specifically described as: The nanopositioner keeps rotating
while the AFM cantilever tip is fixed in a specific spatial
location (in-situ point) by compensating the misalignment
errors from the image through the translation DOFs.

In virtue of [16], the nanorobot system is modelled by:

x(t+ 1) = Ax(t) +B[u(t) + f(t) + E

t−1∑
i=0

u(i)]

y(t) = Cx(t) (1)

where x(t) ∈ R3, and u(t) ∈ R3 are state and input of system,
respectively. y(t) ∈ R2 are output signals which is measured
by SEM. A ∈ R3×3, C ∈ R2×3, E ∈ R3×3 are model matrices
and B ∈ R3×3 is an identity matrix. f(t) is a nonlinear term
representing external disturbances and unmodeled factors.

Remark 1: With the ideal mechanical setup of the
nanorobot, the cantilever exhibits identical motion trajectories
with continuous rotation. Consequently, the in-situ control
challenge of the nanorobot is characterized by iterative rep-
etitions. In (1), the variable t represents the angular increment
of the rotation joint during each rotation, commonly taking
values of 1 degree, 2 degrees, or 5 degrees.

The control objective is now described as: the output y(t)
in system (1) is desired to remain constant, consistent with its
initial value. To address such problems, we rewrite system
(1) in more general multi-input and multi-output (MIMO)
nonlinear form:

x(k, t+ 1) =A(k)x(k, t)+B(k)(u(k, t)+θ⊤(k)ϕ(x(k, t), t)),

y(k, t+ 1) =C0x(k, t+ 1), x(k, 0) = xk

(2)
where t ∈ ZN and k ∈ Z+, respectively, denote the time and
iteration index. xk ∈ Rn represent the unknown initial states
at k-th batch.

The system is considered to be an iterative-varying one in
the sense that A(k) = A0+∆A(k) and B(k) = B0+∆B(k),
in which A0 and B0 are the nominal part of A(k) and B(k),
∆A(k) and ∆B(k) are the corresponding uncertainties in the
k-th iteration. A0, B0, C0 are assumed iteration-invariant and
known. In this letter, the effects caused by nonlinear term f(t)
and cumulative input E

∑t−1
i=0 u(k, i) are expressed as a static

parametric model (SPM), i.e. θ⊤(k)ϕ(x, t). θ(k) ∈ Rs×m is
an unknown constant matrix and ϕ(x, t) ∈ Rs×1 is a bounded
and known vector depending on the state. For future use,
define Gk(z) := C0(zI −A(k))−1B(k), and ∆i is utilized to
represent the leading principal minors of the high-frequency
gain matrix of Gk(z), for all i ∈ Im. To proceed, some
assumptions are made as follows:

Assumption 1: (A(k), B(k), C0) and (A0, B0, C0) are sta-
bilizable and detectable for all k ∈ Z+. Furthermore, the
matrix B0 is a full rank matrix. ◁

Assumption 2: [17] Gk(z) is a full-rank matrix with all its
zeros located in the unit circle in the z-plane for all k ∈ Z+.
For all i ∈ Im, ∆i are nonzero, and sgn(∆i) is known. ◁

Remark 2: Assumption 1 is crucial for ensuring the solv-
ability of the rotation task and for preserving internal stability
within the system. Assumption 2 essentially captures charac-
teristics of the zero structure of the system transfer matrix
Gk(z) at infinity (z = ∞) and therefore is required for
stable zero-pole cancellations in plant-model matching (see
(8)), and is used for constructing a common reference model
transfer matrix Wm(z). The assumptions made regarding the
nanorobot signify its’ capability to execute precise and stable
manipulation, facilitating the feedback control design.

Now, the off-axis in-situ control problem is cast as:
Problem 1: Suppose Assumptions 1-2 hold. For repetitive

system (2) with bounded model uncertainties and external
disturbances, design a control scheme such that for any initial
state of the system, all the signals of the closed-loop system are
bounded and the system output signals y(k, t) asymptotically
track a desired trajectories1 yd(t) as k → ∞. ◁

1For off-axis in-situ rotation of the nanorobotic manipulation considered,
the desired trajectory is its initial position yd(t) = yd(0) for all t ∈ ZN
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Fig. 2. Schematic of the proposed IL-CMARC scheme.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

A. Controller Design

First, in virtue of (2), the reference model is given by

xr(k, t+ 1) = Arxr(k, t) +B0r(k, t),

yr(k, t+ 1) = C0xr(k, t+ 1), xr(k, 0) = x0 ∈ Rn (4)

where r(k, t) ∈ Rm is a reference signal provided by an
IL update law in (5), x0 ∈ Rn represent the initial states
demanded by users. Ar = A0 +B0K0 is a Schur matrix that
is stabilized by a proper gain matrix K0 ∈ Rm×n. Since the
controllability of (A0, B0) is hypothesized in Assumption 1,
the existence of K0 is ensured. Note that, if we recast system
(4) as yr(k, t) = Wm(z)Jr(k, t)K with Wm(z) = C0(zI −
Ar)

−1B0, there exists a finite and non-singular matrix Kp

[17] such that Kp = limz→∞ W−1
m (z)Gk(z) for all k ∈ Z+.

System (4) plays the role of a ‘reference’ in the sense that
we wish the state of Plant (2) to asymptotically track the state
of (4) via the adaptive control law. However, in contrast to
conventional MARC, here, the design of K0 is rather simple
as we only need to render the Ar matrix to be Shur. It implies
that the proposed scheme does not require a delicate design
of K0 to balance the performance specifications such as the
transient behavior, settling time, steady-state error, etc. Instead,
we tend to achieve an ‘optimal’ behavior via an iterative
learning procedure. That is, we will find r(k, t) such that
yr(k, t) → yd(t) as k → ∞. To achieve this, it is natural
to assume the desired trajectory yd(t) is realizable.

Assumption 3: There exists a bounded state sequence xd(t)
and a unique bounded input sequence rd(t) that satisfy

xd(t+ 1) = Arxd(t) +B0rd(t)

yd(t+ 1) = C0xd(t),

with xd(k, 0) = x0 ∈ Rn. ◁

Now, the IL update law at k-th operation cycle is given by

r(k + 1, t) = r(k, t) +Kr(t)[xd(t)− xr(k, t)], (5)

where Kr(t) ∈ Rm×m is a learning gain matrix that verifies
the following condition [18]

∥I −Kr(t)B0∥ ≤ ρ < 1 , ∀t ∈ ZN (6)

where ρ ∈ [0, 1) is a constant. Note that, since the reference
model is purely numerical, one can easily obtain an IL update
law r(k, t) achieving a high precision tracking.

As shown in Fig. 2, with the IL-loop enabling yr(k, t) to
track yd(t), the original problem has now been shifted to steer
the output of system (2) to track the output of system (4),
i.e. y(k, t) → yr(k, t) as t → ∞. The main challenge of
transferring the learned policy from the reference model to
a physical one arises from the model uncertainties, external
disturbances and iteration-varying initial states, which are
tackled by the following CMARC law:

u(k, t)=K1(k, t)x(k, t)+K2(k, t)r(k, t)−θ̂⊤(k, t)ϕ(x) (7)

where θ̂(k, t) is the adaptive estimate of the unknown com-
pensation term θ. K1(k, t) := K0+Kx(k, t) with some matrix
Kx(k, t) ∈ Rm×n, and K2(k, t) ∈ Rm×m are the estimates of
K∗

1 (k) and K∗
2 (k), which satisfy the matching condition [19]:

C0(zI −A−BK∗⊤
1 )−1BK∗

2 = Wm(z) , K∗−1
2 = Kp (8)

Further, the accessibility of the state x(k, t) is assumed or
provided by an observer, such as a Kalman observer [20] and
extended state observer [21]. The convergence of the observa-
tion error is not discussed here, due to space limitations.

Next, we are going to develop the update laws for the
matrices K2(k, t), Kx(k, t), and θ̂⊤(k, t). For the simplicity
of the notation, let us first define

Θ⊤(k, t) :=
[
K1(k, t),K2(k, t), θ̂

⊤(k, t)
]
∈ Rm×(n+m+s)

Θ∗⊤(k) :=
[
K∗

1 ,K
∗
2 , θ

⊤] , Θ̃(k, t) := Θ(k, t)−Θ∗(k).

Substituting the controller (7) in the plant (2), together with
(4) and (8), we have the output tracking error equation

er(k, t) = y(k, t)− yr(k, t) = Wm(z)KpJΘ̃⊤ω(k, t)K (9)

with ω(k, t) =
[
x⊤(k, t), r⊤(k, t),−ϕ⊤(x, t)

]⊤
.

Now, we present the composite updated law as follows

Θ⊤(k, t+ 1) = Θ⊤(k, t)− Dϵ(k, t)ζ⊤(k, t)

m2(k, t)
, (10)

βi(k, t+ 1) = βi(k, t)−
Γβiϵi(k, t)ηi(k, t)

m2(k, t)
, (11)

Ψ(k, t+ 1) = Ψ(k, t)− Γϵ(k, t)ξ⊤(k, t)

m2(k, t)
, (12)

ϵ(k, t) =
[
0, β⊤

2 η2, . . . , β
⊤
mηm

]⊤
(k, t) + Ψ(k, t)ξ(k, t) + ēr(k, t)

=
[
η2, β̃

′⊤
2 η3, . . . , β̃

′⊤
m ηm+1

]⊤
(k, t) + Ψ̃(k, t)ξ(k, t) +DS(k)Θ̃⊤(k, t)ζ(k, t)︸ ︷︷ ︸

prediction error

− ēr(k, t)︸ ︷︷ ︸
tracking error

(3)
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where 0 < Γβi = Γ⊤
βi < 2Ii−1, i = 2, . . . ,m, 0 < Γ =

Γ⊤ < 2Im, D is chosen to satisfy 0 < DSD < 2Im,
S is a symmetric positive definite matrix defined later, and
m(k, t) =

√
1 + ζ⊤ζ(k, t) + ξ⊤ξ(k, t) +

∑m
i=2 η

⊤
i ηi(k, t).

The composite error signals ϵ = [ϵ1, . . . , ϵm]
⊤ and filtered

tracking error ēr = [ēr,1, . . . , ēr,m]⊤ are computed in (3) (refer
to the detailed derivation process in Supplementary Material
(SM) Section III) and

ēr(k, t) = W−1
m (z)h(z)Jer(k, t)K,

ξ(k, t) = Θ⊤(k, t)ζ(k, t)− h(z)JΘ⊤ω(k, t)K,
ζ(k, t) = h(z)Jω(k, t)K

ηi(k, t) = [ēr,1, . . . , ēr,i−1]
⊤
(k, t),

(13)

with h(z) = 1/fh(z), where fh(z) is a stable and monic
polynomial of degree that equals the degree of W−1

m (z).
βi(k, t) ∈ R(i−1)×1 and Ψ(k, t) ∈ Rm×m are respectively the
estimate of β∗

i (k) = [β∗
i,1, . . . , β

∗
i,i−1]

⊤(k), i = 2, . . . ,m, and
Ψ∗(k) = DS(k) in the k-th iteration. β∗

i,j(k) = L−1(k)− Im
with β∗

i,j(k) = 0 for i ∈ Im and j ≥ i. L(k), D and
S(k) are the LDS decomposition [22] of Kp(k), i.e. Kp(k) =
L(k)DS(k). It is worth noting that, from Assumption 2, there
exists a matrix D for the piecewise constant matrix Kp(k) for
all k ∈ Z+. The estimation error are defined as β̃

′

i(k, t) =
[β̃⊤

i , 1]⊤(k, t) = [(βi − β∗
i )

⊤, 1]⊤(k, t) for i = 2, . . . ,m, and
Ψ̃(k, t) = Ψ(k, t)−Ψ∗(k).

Remark 3: The uniqueness of our composite adaptive law
lies in its fusion of predictive modeling and tracking error
feedback. This innovative approach allows us to leverage hid-
den parametric information within prediction errors, enhancing
both trajectory tracking and parameter estimation.

Remark 4: At k-th iteration, the adaptive laws (10)-(12)
ensure that 1) βi(t) ∈ l∞, i = 2, 3, . . . ,m,Θ(t) ∈ l∞,Ψ(t) ∈
l∞, and ϵ(t)

m(t) ∈ l2 ∩ l∞, which implies that limt→∞ ϵ(t) = 0;
2) βi(t+1)−βi(t) ∈ l2∩l∞, i = 2, 3, . . . ,m,Θ(t+1)−Θ(t) ∈
l2 ∩ l∞, and Ψ(t + 1) − Ψ(t) ∈ l2 ∩ l∞. The proof of these
statements is given in SM Section V.

Let Θ̃r = diag(Θ̃⊤, [β̃2, · · · , β̃m]⊤, Φ̃). In view of (10)-
(12), one can obtain

Θ̃r(k, t+ 1) = Θ̃r(k, t)− ΓrϵrΦr/m
2(k, t)

with Γr = diag(D,Γβ2, · · · ,Γβm,Γ), ϵr = diag(ϵ, ϵ2I1, · · · ,
ϵmIm−1, ϵ) and Φr = diag(ζ⊤, [η2, · · · , ηm]⊤, ξ⊤). Consider
the case when ΓrϵrΦr

m2 (k, t) satisfies the PE condition, defined
in Definition 1 in SM Section I, the estimation error Θ̃r will
exponentially converge to zero.

B. Brief Stability Analysis
Define ed(k, t) = yd(t) − yr(k, t) and e(k, t) = yd(t) −

y(k, t). According to the above analysis, we are now in a
position to state the main results of this article.

Theorem 3.1: Suppose Assumptions 1-3 hold for system
(2). For any ϵd > 0, t ∈ ZN and k ≥ k∗ with some k∗ ∈ Z+,
the proposed IL-CMARC scheme guarantees that all signals
of the closed-loop system described by (2), (5), (7), (10)-(12)
are bounded and limt→∞ ∥e(k, t)∥ ≤ ϵd, if the condition (6)
is satisfied.

Proof: In view of (9), it is easy to see that e(k, t) =
ed(k, t)− er(k, t). On the one hand, given condition (6), the
proof of the zero convergence of ed(k, t) follows a standard
procedure of compression mapping that is similar to the proof
of Theorem 3 in [23] and hence is omitted here due to space
limitation (see SM Section II for more detail). Therefore, for
any ϵd > 0, t ∈ ZN , there exists a constant k∗ ∈ Z+ such that
for all k ≥ k∗, ∥ed(k, t)∥ < ϵd. On the other hand, according
to error equation (9), the convergence of tracking error er(k, t)
is guaranteed by analyzing signal transmission and using the
small gain theorem (see Lemma 3 in SM Section I for detail).
In the process, the boundedness of all signals is also ensured.

Finally, we can conclude that

∥e(k, t)∥ ≤ ∥ed(k, t)∥+ ∥er(k, t)∥ < ϵd + ∥er(k, t)∥ (14)

for all k ≥ k∗. Taking the limit of t → ∞ on both side of
(14), we have limt→∞ ∥e(k, t)∥ ≤ ϵd.

Remark 5: Note that, we choose to present our convergence
property in the time domain, rather than the iteration domain,
which is primarily motivated by the consideration of our
nanorobot system’s mechanical configuration. Although off-
axis in-situ rotation follows a recurring and iterative pattern,
the control objective primarily focuses on time-domain con-
vergence, given the continuous nature of the motion trajectory
and the inherent time-varying nature of uncertainties.

IV. EXPERIMENT RESULTS

A. Nanorobot Setup

SEM Monitor

PC Controller

Scanning Electron Microscope

Robot Controller

Vacuum

Chamber

SEM Electron Gun

Nanorobot

Cantilever

Fig. 3. The testing nanorobot system. Overall view and close view(top-
left subfigure) of nanopositioner mounted in the SEM vacuum chamber.

Fig. 3 shows the testing nanorobot under a scanning electron
microscope (SEM). The SEM was JEOL JSM-IT500HR/LA,
working at high vacuum mode for imaging through detect-
ing secondary electrons, under 10 KV acceleration voltage,
which captures 7 frames per second with an image size of
640×480 in pixel. The AFM cantilever in this experiment was
NANOSENSORS ATEC-FM. The translation DOFs were At-
tocube piezoelectric ECSx3030 (1 nm resolution), representing
xM , yM and zM -axis. The rotation DOF mounted on yM -
axis was Attocube piezoelectric ECR3030 (1 × 10−6 degree
resolution).
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Fig. 4. Convergence Performance of IL-CMARC Scheme. (Top) Itera-
tive convergence of ed(k, t). (Middle) Convergence of Θ, β1, β2 and
Ψ. (Bottom) Iterative convergence of mean of e(k, t) per round.

The off-axis rotating experiments were implemented with
a control step of 1 degree, and each iteration of rotation
consisted of 360 control steps. The affixed cantilever was
observed under SEM at a magnification of 500. The image
Jacobian matrix of the robot system was calibrated as follows.

J =

[
0.0001 0.0026 −0.0001
0.0026 −0.0001 −0.0000

]

B. In-situ Rotating Experiment

The nominal model of the nanorobot is identified as

A0 =

0.9998 −0.0002 −0.0175
0.0002 1.0000 −0.0002
0.0175 0.0002 0.9998

 , B0 =

1 0 0
0 1 0
0 0 1


C0 =

[
0.0001 0.0026 −0.0001
0.0026 −0.0001 −0.0000

]
, x0 =

3961230
214680

nm

Parameters of the proposed scheme were chosen as: Ar =
diag{−0.3,−0.5,−0.7}, Kr = diag{0.1, 0.1, 0.1}, D =
diag{0.2, 0.2, 0.2}, Γ = diag{500, 500, 500}, Γβ2 = 1.2,
Γβ3 = diag{1.1, 1.1}, h(z) = 0.6321/(z−0.3679). Appropri-
ate initial values were assigned to βi(t), Θ(t), and Ψ(t). The
signal regressor was specified as ϕ(x, t) = [x(t), sin(t), 1]⊤.
The reference signal r(t) was obtained by 400 iterations offline
IL-Loop running on the nominal model.

As observed in Fig. 4, the offline IL-Loop greatly enhances
the online CMARC-loop convergence performance, as the
offline IL requires around 150 iterations to reach 10µm preci-
sion, while the online adaption error achieved 9µm precision

from the beginning. Further, due to the time delay and duration
of capturing SEM images, each control step of 1 degree
requires nearly 1 second to capture a high-quality SEM image
and 0.1 milliseconds to implement control process, leading
to one iteration costing roughly 6 minutes. This makes the
pure online ILC infeasible and validates the necessity of the
proposed offline IL-loop. Simulation results also conform to
the same conclusion (see SM Section VI).

Fig. 5 illustrates the control performance of IL-CMARC
during one round in-situ rotation. As can be seen, the average
misalignment error was about 5 microns, while the standard
deviation of the misalignment errors was about 4 microns. Fig.
5 bottom shows the tip trajectory on the image plane, while
Fig. 6 shows the sequential images during one round rotation
by every 30 degrees.
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Fig. 5. In-situ rotating experiment results.

TABLE I
COMPARATIVE RESULT OF OFF-AXIS ROTATION

Control method nRound Avg. error
(µm)

Max. error
(µm)

Std. error
(µm)

IL-CMARC
1 9.1968 60.3059 9.5250
3 6.7168 48.2676 6.4325
6 5.0055 29.0269 4.1723

PID / 9.7652 29.6000 4.7173
MPC / 7.2595 36.4198 5.5956

C. Comparative Experiments
Next, we compare the proposed method with proportional-

integral-derivative (PID) control (KP = 0.5 and KD = 0.1)
and model predictive control (MPC) (the weight matrices are
set to be diag{2, 2, 2} and diag{10, 10, 10}) to further illustrate
the superior performance of the proposed method.

Statistical results of the comparative experiments were pro-
vided in Table I. It can be seen that: the proposed IL-CMARC
method outperformed the other two control methods in terms
of average error, maximum error and standard deviation. The
results of tracking error e(t) on the image plane in different
control methods are illustrated in Fig. 7.

Also, it is worth mentioning that, as the results shown
in Section VI in Supplement Material, purely CMARC and
purely ILC are incapable of solving the rotation task. Conven-
tional CMARC can only guarantee that y(k, t) converges to
yr(k, t) rather than converges to yd(t) directly. Correspond-
ingly, by incorporating the concept of the reference model in
CMARC, the stringent repeatability requirements in traditional
ILC have been removed.

V. CONCLUSIONS

In this letter, we proposed an IL-CMARC scheme for the
efficient visual servo to solve the problem of in-situ off-axis

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2023.3336545

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 07,2024 at 07:26:30 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. SEM images of the rotating experiment of cantilever tip about rotation axis with rotation range of 360° and rotation step size of 1°. The
magnification is 1000 and the length of the scale bar is 100 µm. The AFM cantilver used here is NANOSENSORS ATEC-FM.
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Fig. 7. Result of Different control methods for off-axis rotation.

rotation. By decoupling the ILC-loop and CMARC-loop in the
iterative and time directions, the proposed method can first
run in a “virtual” model to circumvent the strict repetitive
limitations. Then, by reusing the stabilized nominal model
and the trained signal, the presented framework preserves its
advantages (direct tracking and good adaptation ability). The
effectiveness of the proposed scheme is verified by extensive
simulation (see SM) and a nanorobotic system with SEM.
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